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ABSTRACT 

The spatial resolution in emission tomography induces 
partial volume effects, leading to under-estimation of the 
real uptake and activity spillover. They can be corrected 
using either region of interest or voxel based approaches. 
We developed a voxel wise correction, based on the 
wavelet transform of two co-registered images in order to 
insert high resolution details of the anatomical image into 
the functional one. A limitation is the use of a global 
model which may create artefacts in the corrected image 
where there is no correlation between the two modalities. 
The aim of this work was to develop a conditional 
correction: a comparison between the two modalities 
using hidden Markov modelling and multi-resolution 
analysis was developed to allow such a correction. The 
process was successfully tested on synthetic and clinical 
images avoiding artefacts.  

Index Terms— Wavelet, multi-resolution, partial 
volume effect, hidden Markov models, PET 

1. INTRODUCTION 

1.1. Partial volume effects and correction 

Partial volume effects (PVE) are consequences of the 
limited spatial resolution in emission tomography. They 
lead to a loss of signal in tissues of size similar to the 
point spread function (PSF) of the imaging device and 
induce activity spill over between adjacent structures with 
different amounts of activity.  
These effects can be corrected for by using either region 
of interest (ROI) or voxel based methods. Most of the 
suggested approaches rely on the knowledge of the point 
spread function (PSF) of the scanner and a priori
anatomical information provided by either computed 
tomography (CT) or magnetic resonance imaging (MRI).  
Furthermore, they frequently require a segmentation step 
[1]. Boussion et al [2] proposed a new voxel wise based 
PVE correction methodology based on mutual multi-
resolution analysis (MMA) of an emission tomography 

image and a corresponding co-registered CT or MRI 
image. One advantage of this PVE correction approach is 
that corrected images are generated; not only eliminating 
the need of a segmentation step but also allowing further 
image processing and potentially an improvement in the 
clinical diagnosis. 

1.2. The mutual multi-resolution approach 

The multi-resolution PVE correction approach consists in 
extracting some details of a high resolution anatomic 
image, and adding them through a model in the associated 
co-registered functional image. Previous work [2] has 
demonstrated that as long as realignment differences 
between the two images are within half of the size of the 
emission system's PSF no significant errors are 
introduced. The principle of this method is described in 
detail in [2].  As a first step, discrete wavelet transforms of 
both the anatomic and the functional images are 
performed via the "à trous" algorithm, up to the spatial 
resolution level common to both modalities. As a second 
step, a linear model is established between the anatomic 
and functional details at this common spatial resolution 
level, assuming a correlation between the wavelet 
coefficients in the two images. In this linear model, a 
global parameter  is defined as the mean voxel by voxel 
division of the functional wavelet coefficients by the 
anatomical ones. As a third step, this model is applied to 
the high resolution details of the anatomical image in 
order to obtain the lacking ones in the functional image. 
Finally, in the last step, these new details are inserted into 
the initial functional image to obtain the corrected image.  

1.3. Limitations and possible improvement 

The main drawback of this multi-resolution approach 
comes from the simple linear model established between 
the high and low resolution details. As this latter is global, 
it may introduce artefacts in some cases especially if 
structures belonging to the anatomical image are not in the 
functional one. The goal of the present study was to 
improve this approach in order to avoid such artefacts via
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a new conditional multi-resolution based correction. Our 
approach is based on a comparison in the wavelet domain 
between anatomical and functional decompositions, using 
statistical hidden Markov models, in order to obtain 
conditional correction maps (CCM).  
These latter represent the main differences between 
functional and anatomical details, allowing the application 
of a so-called conditional PVE correction according to the 
presence or not of similar structures in both anatomical 
and functional images. 

2. MATERIALS AND METHODS 

2.1. The Hidden Markov Tree (HMT) model 

Since the MMA PVE correction method is based on the 
use of the wavelet decompositions to obtain the lacking 
details of the functional image (see left part of fig. 3), the 
comparison step occurs in the wavelet domain. The 
technique we chose for the comparison step is based on a 
special class of nonlinear Markov models. These are 
defined as discrete Markov random fields (MRF) attached 
to the nodes of a quad-tree. The main advantage of the 
quad-tree, whose structure is illustrated in Fig. 1, is its 
ability to model properties which enable the design of 
exact non-iterative inference algorithms, like those in the 
Markov chains. It is consequently possible to link the 
different scales of a given decomposition using 
probabilistic and statistical relationships considering a 
hierarchical structure in which one “father” (level of 
resolution j-1) has 4 “sons” (level of resolution j). In [3], 
Crouse et al. proposed and described such a statistical 
model in the wavelet-domain, called a Hidden Markov 
Tree (HMT) model. The HMT model is a tree-structured 
probabilistic graph that can model the joint statistics of the 
coefficients of a wavelet transform.  

Fig. 1. Quad-tree decomposition of a 2J x 2J image 

Due to the compression property of the wavelet transform, 
we can assume a two-state zero-mean Gaussian mixture 
model for a random variable W (for each wavelet 
coefficient). Given a hidden state variable S associated to 

the random variable W, and p the probability mass 
function; S=1 leads to a low variance Gaussian probability 
density function (pdf) and S=2 to a high variance 
Gaussian pdf (fig. 2). 

Fig. 2. Two-state mixture model 

Considering a wavelet domain quad-tree decomposition of 
an image and the mixture model previously described, the 
HMT model can be considered as a multidimensional 
Gaussian mixture model to which Markovian 
dependencies between the hidden states along scales are 
applied. The HMT model is therefore parameterized by: 

(1) pSJ(m): the pmf of the root node SJ

(2) ][ )()(, )( rSmp ipSSimr
ipi ip ==ε , the transition 

conditional probabilities between scales
(3) mi,μ and 2

,miσ , the Gaussian mixture model 
parameters 

These parameters can be estimated thanks to the iterative 
Expectation Maximization (EM) algorithm [3, 5]. In order 
to avoid practical implementation issues regarding the 
HMT model training for image processing applications 
[4], we used an initialization scheme from Fan and Xia 
[6]. This latter is based on a two-step EM algorithm 
initialization (a within-scale scanning followed by an 
across-scale counting) improving the main EM step 
results. Both methods [3] and [6] use HMT models based 
on the simple Haar wavelet transform and the Mallat’s 
algorithm [7] due to its natural quad-tree decomposition. 
However, depending on the application, other wavelet 
transforms and algorithms can be used. For our new 
methodology, the “a trous” algorithm with bi-cubic splines 
interpolation was chosen. 

2.2. Wavelet-based segmentation 

In order to compare both modalities, our primary 
objective was to build binary maps (one for each 
modality) classifying voxels according to the region they 
are in. Voxels from homogeneous areas were classified as 
S=1 while voxels belonging to boundaries were classified 
as S=2. The first step consists in up-sampling the 
anatomical image in order to obtain a correlation between 
the spatial resolution and dimensions of the two initial 
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images. This is performed using a bi-cubic splines 
interpolation. The next step consists in applying wavelet 
decompositions (in the same way used in the multi-
resolution approach) and down-sampling in a dyadic way, 
in order to fill in the entire quad-tree structures. Once the 
two decompositions obtained, the same levels of 
resolution are extracted and a HMT model is created on 
each quad-tree for the segmentation step. Concerning this 
process, the initial parameters are computed using the 
two-step algorithm EM initialization [6]. Then, the 
iterative EM algorithm [3, 5] is applied in order to obtain 
the parameters optimal values for the HMT model. 
Finally, the MPM algorithm [3, 5] is used with the 
previously estimated parameters in order to obtain the 
segmentation maps (hidden states of each wavelet 
coefficient) for both wavelet-decomposition images on the 
quad-tree. 

2.3. CCM and conditional PVE correction 

In order to perform the comparison between the two 
segmentation maps (binary images), we use a local 
dissimilarity comparison method introduced by Baudrier 
et al. [8]. This approach is based on a locally measured 
and modified Hausdorff distance and allows the main 
differences between binary dyadic decompositions to be 
successfully localized and extracted. A CCM is therefore 
an image in which the grey levels indicate a voxel-by-
voxel estimation of the differences between the two binary 
segmentation maps. 
The initial MMA for PVE correction is then modified by 
(a) computing the linear model parameters using only the 
wavelet coefficients considered as edge on the two 
modalities, and (b) discarding the differences defined by 
the CCM in order to eliminate artefacts. The first step of 
the method is the same as the previously proposed MMA 
approach and is based on the wavelet decompositions of 
both images. Then the HMT model is used in order to
compare both decompositions based on  the segmentation 
results, in order to build the CCM maps which define 
differences between the anatomical and functional images. 
Finally a  conditional correction is performed being 
applied only where  a strong correlation between 
functional and anatomical information exists. In addition, 
the parameter  of the global model (see section 1.2) is 
computed for the rest of the image using only the data for 
which a correlation has been found, hence avoiding any 
bias resulting from areas where no correlation exists. 

2.4 Evaluation 

The whole process and associated results are illustrated in 
Fig. 3 on a functional/anatomical synthetic dataset. The 
conditional MMA for PVE correction has also been 
applied to a clinical MRI/PET dataset as illustrated in 
Fig.4. It consisted of a FDG brain PET (Philips GEMINI) 
and corresponding T1-weighted MRI (GE 1.5T, with 
injection of gadolinium) images acquired on a patient. The 
images were spatially co-registered by using mutual 
information maximization and affine transformation. The 
MRI image shows a hyper intensity signal in the left 
occipital lobe and the posterior cingulum due to the 
injection of gadolinium.

3. RESULTS 

As illustrated in the figure 3, on the one hand, the classical 
multi-resolution approach corrects the whole PET image 
according to a global linear model introducing this way 
details of the anatomical image that do not correspond to 
details in the functional image. On the other hand, the 
conditional approach discards such artefacts by detecting 
the main differences between images in the wavelet 
domain.  

Similar results are shown in figure 4 for the clinical 
dataset. Whereas the standard MMA PVE correction 
introduces artefacts (tumour uptake) in the corrected PET 
images due to hyper intensity of gadolinium in the 
occipital lobe (see fig. 4), the conditional approach detects 
the main differences between images of the two modalities 
and avoids the insertion of erroneous information in the 
non-correlated regions (see fig. 4). 

4. DISCUSSION AND CONCLUSION 

In this paper, we have introduced a new approach to 
improve a multi-resolution based PVE correction 
methodology. The wavelet-domain HMT model was used 
for the segmentation of wavelet transforms of 
anatomical/functional datasets. Conditional correction 
maps were then deduced from the obtained binary 
decompositions. As shown by the preliminary results 
presented, the new conditional PVE correction algorithm 
improves the classical multi-resolution approach avoiding 
over correction and the introduction of artefacts. This is 
especially interesting in some clinical cases as the one 
presented in fig. 4. Future work will concentrate on a 
thorough validation of the approach as well as finer tuning 
of the HMT model and CCM determination, thanks to 
larger datasets including simulated and clinical images. 
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Fig. 3. Conditional and standard PVE correction approaches illustrated on a synthetic dataset 

Fig. 4. Conditional and standard PVE correction approaches applied to a clinical dataset
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